Hammar Reliance Documents – Updated 1/1/2014

Note: this list reflects Dr. Hammar’s most commonly cited reliance documents.

Table of Contents

Core Reliance Documents	...	4
Books	...	4
Attribution	...	4
Background Level	...	5
Concentrations	...	5
Environmental Exposure and EPA	...	5
Familial/Paraoccupational/Non-occupational Exposures	...	6
Fiber Burden	...	6
Genetic Alterations	...	7
Genetic Susceptibility	...	7
Governmental and Other Agencies Concerning “No Safe Level”	...	7
Historical	...	8
IMIG Consensus Statement	...	8
Low Level Exposure	...	9
PEL	...	9
Translocation	...	9
Tumorigenesis	...	10
Alpha by Author	...	10
Cullen	...	10
Dodson	...	10
Egilman	...	11
Hammar (also see CV)	...	11
Heller	...	12
Henderson	...	12
Henley	...	13
Hillerdal	...	13
Hodgson and Darnton	...	13
Iwatsubo	...	13
Langer and Nolan	...	13
Leigh .. 13
Lemen .. 14
Nicholson .. 14
Ordónez ... 14
Reid and de Klerk .. 15
Rodelsperger ... 15
Rolland .. 15
Saracci ... 16
Selikoff .. 16
Suzuki .. 16
Welch .. 16

Lung cancer, Asbestosis, and Pleural Plaques ... 17
Lung Cancer Risk According to Occupation .. 18
Synergism (interactions/mechanisms of the combined effect of asbestos and smoking in the etiology of lung cancer) .. 18
Lung Cancer, Cigarette Smoking, and HPV ... 18
Calidria/UICC-B Asbestos .. 19
Chrysotile Asbestos .. 20
Talc ... 23
Mesothelioma by Type .. 24
Deciduoid Mesothelioma .. 24
Localized Malignant Mesothelioma ... 25
Pericardial Mesothelioma .. 26
Peritoneal Mesothelioma ... 27
 Peritoneal mesothelioma case reports ... 28
Pseudomesotheliomatous Adenocarcinoma ... 30
Small cell mesothelioma ... 32
Tunica Vaginalis Testis Meso .. 32
Well-differentiated Papillary Mesothelioma .. 34
Selected Cancers ... 35
Colorectal, Esophageal, Laryngeal, Pharyngeal, Stomach, Kidney/Renal, Ovarian, Lymphoma, Autoimmune, Pseudomeso ... 35
Kidney/Renal Carcinoma .. 35
Multiple Myeloma ... 36
Non-malignant Asbestos-related Diseases ... 37

Occupations/Trades Associated with Asbestos Exposure 37
 List of Occupations Associated with Asbestos Exposure 37
 General .. 38
 Construction: Carpenters/Electricians ... 39
 Insulation Workers ... 39
 Longshoremen/Dock Workers/Shipbuilding Industry/Shipyard Workers 39
 Maintenance Workers .. 39
 Merchant Marines/Seamen .. 40
 Plumbers/Pipefitters ... 41
 Pulp and Paper Mill Workers .. 41
 School Teachers ... 41
 Textile Workers ... 42

Products Associated with Asbestos Exposure .. 43
 Cement Pipe .. 43
 Drywall, Taping, and Joint Compounds ... 44
 Floor Tiles .. 45
 Friction Products .. 45
 Gaskets .. 46
 Kent Cigarettes .. 47
 RT Vanderbilt Talc .. 47

Regions .. 48
 Registers .. 49

Miscellaneous .. 51
 Animal Studies .. 51
 Black Spots on the Pleura .. 51
 Metastases ... 51
 SV40 Virus ... 51
Core Reliance Documents

Books

Attribution

Background Level
Roggli VL, Oury TD, Sporn TA, eds. Pathology of Asbestos-Associated Diseases, 2nd Ed. New York: Springer, 2004 (Table 2.2).

Concentrations

Environmental Exposure and EPA

EPA Region 9: Response to the November 2005 National Stone, Sand & Gravel Association Report prepared by the R.J.Lee Group, Inc. “Evaluation of EPA’s analytical data from the El Dorado Hills Asbestos Evaluation Project.” April 20, 2006 (Rejection of Berman-Crump and statement that “a concentration of 0.0002 f/cc translates in the protocol to an increased cancer risk of 1 in 1,000 exposed individuals,” which is outside the acceptable cancer risk ranges of EPA, Cal/EPA and most other state and federal health agencies - see pages 12-14 of document)

Familial/Paraoccupational/Non-occupational Exposures

Familial Exposure to Asbestos (List of 50 references)
Familial Exposure to Asbestos: Citations and Summary

Fiber Burden

Genetic Alterations

Genetic Susceptibility

Governmental and Other Agencies Concerning "No Safe Level"
NIOSH, 1976 (page 92): “excessive cancer risks have been demonstrated at all fiber concentrations studied to date. Evaluation of all available human data provides no evidence for a threshold or a ‘safe’ level of asbestos exposure.”

NIOSH, 1980 (page 3): “All levels of asbestos exposure studied to date have demonstrated asbestos related disease...there is no level of exposure below which clinical effects do not occur.”

USPHS, 1980: “It is important to point out that when a permissible level for exposure (PEL) to a certain carcinogen is set by OSHA, there is no implication that such a level is safe. To the contrary, it is the agency’s policy that any occupational exposure to a carcinogen carries with it some risk of disease, even if it cannot be easily or precisely measured.”

NIOSH, 1986 (page 319): “a linear, no threshold, dose-response relationship...Any asbestos exposure carries with it some increased risk of asbestos related disease.”

OSHA, 1994 (page 40978): “reducing exposure to 0.1 f/cc would further reduce, but not eliminate, significant risk. The 0.1 f/cc level leaves a remaining significant risk.”

WHO, 1998 (page 144): “Exposure to chrysotile asbestos poses increased risks for asbestosis, lung cancer and mesothelioma in a dose-dependent manner. No threshold has been identified for
carcinogenic risks.”

WTO, 2000: “...the experts confirm the position of the European Communities according to which it has not been possible to identify any threshold below which exposure to chrysotile would have no effect. The experts also agree that the linear relationship model, which does not identify any minimum exposure threshold, is appropriate for assessing the existence of a risk. We find therefore that no minimum threshold level of exposure or duration of exposure has been identified with regard to the risk of pathologies associated with chrysotile, except for asbestosis.”

IARC 2012, Volume 100C. Asbestos (chrysotile, amosite, crocidolite, tremolite, actinolite, and anthophyllite).

Historical

IMIG Consensus Statement

Low Level Exposure

Sinninghe Damste HE, Siesling S, Burdorf A. Environmental exposure to asbestos in the area around Goor established as a cause of pleural mesothelioma in women. Neth J Med 2007;151:2453-2458 (see page 2456 re 0.11 fiber/cc years).

PEL

Federal Register 1986, Part II: Depart of Labor, Occupational Safety and Health Administration, 29 CFR Parts 1910 and 1926: Occupational exposure to asbestos, tremolite, anthophyllite & actinolite. Final Rules, pages 22612-22790; specifically, Table 6 on page 22644.

OSHA asbestos PELs and risk. E-mail by Tom Laubenthal 05-12-08 and forwarded from Dodson to Hammar 05-14-08.

Translocation

Tumorigenesis

Alpha by Author

Cullen

Dodson

Dodson RF, O’Sullivan M, Brooks DR, Bruce JR. Asbestos content of omentum and mesentery in nonoccupationally exposed individuals. Toxicol Ind Health 2001;17:138-143.

Dodson RF, Williams MG, Satterley JD. Asbestos burden in two cases of mesothelioma where the work history included manufacturing of cigarette filters. J Toxicol Environ Health 2002;65:1109-1120.

Dodson RF, Hammar SP. Pleural mesothelioma in a woman whose documented past exposure to asbestos was from smoking asbestos-containing filtered cigarettes. Inhal Toxicol 2006;18:679-684.

Dodson RF, et al. Asbestos concentration in lung and lymph nodes as compared to asbestos concentration in various levels of lymph nodes that collect drainage from the lung. Ultrastruct Pathol 2007;31:95-133.

Dodson RF, Hammar SP, Poye LW. A technical comparison of evaluating asbestos concentration by PCM, SEM, and ATEM as illustrated from data generated from a case report. Inhalation Toxicology 2008;20:723-732.

Dodson RF, Hammar SP, Poye LW. Mesothelioma in an individual following exposure to crocidolite-containing gaskets as a teenager. Int J Occup Environ Health 2011;17:190-194.

Egilman

Hammar (also see CV)

Dail and Hammar’s Pulmonary Pathology, 3rd Ed. New York: Springer, 2008

- Chapter 27 (volume I) – Asbestos. Hammar SP, Dodson RF. Pages 950-1031.
- Chapter 43 (volume II) – Neoplasms of the Pleura. Hammar SP, Henderson DW, Klebe S, Dodson RF. Pages 558-734.

- Chapter 7: Asbestos and mesothelioma by Hammar SP.
- Chapter 8: Asbestos and other cancers by Hammar SP, Lemen RA, Henderson DW, Leigh J.
- Chapter 9: Asbestosis by Hammar SP.
- Chapter 10: Asbestos-induced pleural disease by Hammar SP.
- Chapter 11: Uncommon nonmalignant asbestos-induced conditions by Hammar SP.

Hammar Affidavit re asbestos and mesothelioma updated 01-07-13.

Hammar Affidavit re asbestos and joint compounds updated 01-07-13.

Hammar Affidavit re autopsies and fiber burden analysis updated 01-07-13.

Hammar Affidavit re what is considered “significant” exposure to asbestos? Updated 01-07-13.

Heller

Henderson

Henley

Hillerdal

Hodgson and Darnton

Iwatsubo

Langer and Nolan

Leigh

Letter from Dr. James Leigh to the US EPA dated 10/1/03.

Lemen

Nicholson

Ordóñez

Ordonez NG. Mesotheliomas with crystalloid structures: report of nine cases, including one with oncocytic features. Mod Pathol 2012;25(2):272-281.

Reid and de Klerk

Rödelsperger

Rolland

Saracci

Selikoff

Suzuki

Welch

Lung cancer, Asbestosis, and Pleural Plaques

Lung Cancer Risk According to Occupation

Lemen RA. Chapter 5 - Epidemiology of Asbestos-related Diseases and the Knowledge that Led to What is Known Today. In: Dodson RF, Hammar SP (Eds.), Asbestos: Risk Assessment, Epidemiology, and Health Effects, 2nd ed. CRC/Taylor & Francis, 2011:155-157 (lung cancer; smoking and risk; and relative risk).

Synergism (interactions/mechanisms of the combined effect of asbestos and smoking in the etiology of lung cancer)
Dail and Hammar’s Pulmonary Pathology, 3rd edition, Volume 1, Chapter 27; specifically, pages 1000-1001 and 1008-1012, including Figure 27.63.

Lung Cancer, Cigarette Smoking, and HPV

Rohrer J, Wuertz BRK, Ondrey F. Cigarette smoke condensate induces nuclear factor kappa-B activity
and proangiogenic growth factors in aerodigestive cells. Laryngoscope 2010;120:1609-1613.

Calidria/UICC-B Asbestos

Deposition of Carl U. Dernehl MD in re Arthur A. Frehse vs Anchor Packing Co, pages 1, 153, and 155.

Sayers IC. Union Carbide UK Limited, Asbestos as a Health Hazard in the United Kingdom.

Letter to Dr. T. J. Hall from Carl U. Dernehl dated June 7, 1967 re Asbestos as a Health Hazard in the United Kingdom.

Internal correspondence to Mr. Robert F. X. Fusaro from K.S. Lane MD dated May 22, 1973.

Study area. Map of Clear Creek Management Area and Atlas Mine Site.

Atlas Asbestos Mine Region 9 Superfund. EPA #CAD980496863.

U.S. Environmental Protection Agency – Region 9 – Clear Creek Management Area Asbestos Exposure Risk Assessment – Frequently Asked Questions.

Wolff MS. Letter and manuscript from Mary S. Wolff of Mt. Sinai School of Medicine dated June 7, 1976 concerning prepublication copy of the paper describing work using Calidria HG 144 and prepublication copy of manuscript by Langer AM, Wolff MS, Rohl AN, Selikoff IJ. Variation of some physical, chemical and biological properties of chrysotile asbestos subjected to prolonged milling.

Answers and objections of defendant Union Carbide Corporation to plaintiff’s first set of interrogatories. In re Norris vs Combustion Engineering, Inc., et al., Civil Action 76-1901.

Chrysotile Asbestos

Glickman et al. Mesothelioma in pet dogs associated with exposure to their owners to asbestos. Env Research 1983;32:305-313.

Dodson RF, et al. Analysis of asbestos fiber burden in lung tissue from mesothelioma patients.

Talc

3M Material Safety Data Sheet 2009. Product Name: 3M Bondo Autobody Filler comprised of 10-30% talc by weight.
Mesothelioma by Type

Deciduoid Mesothelioma

This entity is discussed in Dail & Hammar's Pulmonary Pathology, 3rd Edition. Volume II, Chapter 43, page 649.

Localized Malignant Mesothelioma
This entity is also discussed in Dail and Hammar’s Pulmonary Pathology, 3rd edition. Volume II, Chapter 43, pages 660-661.

Crotty TB, Myers JL, Katzenstein AL, et al. Localized malignant mesothelioma: a clinicopathologic and

Erkilic S, Sari I, Tunzozgur B. Localized pleural malignant mesothelioma. Pathol Int 2001;51:812-815. 61-year-old male with no history of cigarette smoking or asbestos exposure; 5-cm RUL lung mass; epithelial; RX – surgery; recurrence 5 months following surgery.

Pericardial Mesothelioma

Peritoneal Mesothelioma

This entity is also discussed in Asbestos: Risk Assessment, Epidemiology and Health Effects. Dodson RF, Hammar SP (eds), 2nd ed. CRC Press/Taylor & Francis Group 2011.

NIOSH Report to Congress on Workers’ Home Contamination Study Conducted Under the Workers’ Family Protection Act (29 USC. 671a) in 1995. See Table 2 re Health Effects of Take-Home Asbestos Exposure (Cohort Studies).

Heller DS, Gordon RE, Westhoff C, Gerber S. Asbestos exposure and ovarian fiber burden. Am J Ind Med 1996;29:435-439. 9/13 women exposed to asbestos had asbestos in their ovarian tissue (69.23%); 3 (23%) had counts over 1 million fibers per gram of wet weight; 6/17 women had detectable asbestos in their ovaries (35%) with 1 (6%) having a count over 1 million fibers/gram wet weight; 13 women had a history of domestic bystander exposure to asbestos.

Dodson RF, O’Sullivan M, Corn CJ, et al. Analysis of asbestos fiber burden in lung tissue from mesothelioma patients. Ultrastructural Pathology 1997;21:321-336. 5 peritoneal mesotheliomas with high concentrations of asbestos fibers/bodies identified in 3 cases and significantly lower concentrations in 2 cases. Findings show that peritoneal mesotheliomas occur at a variety of concentrations of asbestos in lung tissue.

Dodson RF, O’Sullivan MF, Huang J, Holiday DB, Hammar, SP. Asbestos in extrapulmonary sites – omentum and mesentery. Chest 2000;117:486-493. Asbestos fibers reach areas in the peritoneal cavity where some mesotheliomas develop. This study suggests their presence can be predicted based on concentrations and characteristics of fiber burdens in lung tissue.

Dodson RF, et al. Asbestos content of omentum and mesentery in nonoccupationally exposed individuals. Toxicology and Industrial Health 2002;17:1-6. Asbestos fibers in occupationally exposed individuals relocate from the lung to extrapulmonary sites. A mechanism for relocation is via the lymphatic circulation. This study shows that asbestos fibers also reach the mesentery and omentum in the peritoneal area.

CDC/NIOSH search on March 4, 2012 of precalculated PMRs for white males between 1984 and 1998 (http://www2a.cdc.gov/niosh-noms/process.asp) identified one death from malignant peritoneal mesothelioma in a drywall worker. The total number of deaths for this occupation was 3,173.

Peritoneal mesothelioma case reports

3. O'Donnell WM, Mann RH, Grosh JL. Asbestos: an extrinsic factor in pathogenesis of

4. Godwin MC, Jagatic C. Asbestos and mesothelioma. JAMA 1968;204:1009. A case of peritoneal mesothelioma in a man who had worked as a young adult three years weaving brake lining made from chrysotile asbestos.

5. Borow M, Conston A, Livornese L, Schalet N. Mesothelioma following exposure to asbestos: a review of 72 cases. Chest 1973;64:641-646. Twenty-one peritoneal mesotheliomas in individuals who worked in an asbestos mill where chrysotile was the only fiber used in the textile division of the mill.

12. Maltoni C, Pinto C, Mobiglia A. Mesotheliomas due to asbestos used in railroads in Italy. Annals of New York Academy of Science 1991;643:347-367. Four peritoneal mesotheliomas that occurred among railroad workers in Italy where chrysotile was the type of asbestos prevalently used.

unlikely known exposure to asbestos. Chrysotile fibers were identified in the lung tissue of each case with lower concentrations in the nurse.

14. Andrión A, Bosia, Paoletti L, et al. Malignant peritoneal mesothelioma in a 17-year-old boy with evidence of previous exposure to chrysotile and tremolite asbestos. Human Pathology 1994;25:617-622. A 17-year-old boy whose lung tissue contained 316,000 fibers of chrysotile asbestos per gram of dry lung tissue and 194,000 fibers of tremolite asbestos per gram of dry lung tissue. The length of the chrysotile fibers ranged from 1.5 to 20 microns and had a mean of 12 microns. The tremolite fibers ranged from 0.5 to 15 microns and had a 5 micron average length. 5% of the chrysotile fibers were >5 microns long and 30% of the tremolite fibers were 5 microns long.

16. Aiani MR, Settimi L, Festa R. De Stefani M, Mensi C. Cluster of malignant mesothelioma cases in a thermostat manufacturing industry. Med Lav 2006;97:774-778. Note: article in Italian. 1 peritoneal mesothelioma in workers employed at a thermostat factory where ropes covering oven handles, gaskets and melamine resin reinforced with asbestos were used. The melamine resin reinforced with asbestos that constituted some internal parts of thermostats and were sheared and perforated by the workers.

17. Scripcariu V, Dajbog E, Lefter L, et al. Malignant peritoneal mesothelioma. Chirurgia (Bucur) 2006;101:641-646. Note: article in Romanian. 59-year-old man with malignant peritoneal mesothelioma who worked almost 40 years as an electrician and was exposed to asbestos.

18. Mirabelli D, et al. Excess of mesotheliomas after exposure to chrysotile in Balangero, Italy. Occup Environ Med 2008;65:815-819. 2 peritoneal mesotheliomas; one in a 68-year-old male asbestos hand bagger and the other in a 75-year-old farmer who collected leaves surrounding the mine that were used for cattle litters.

Pseudomesotheliomatous Adenocarcinoma

This entity is also discussed in Hammar SP, Henderson DW, Klebe S, Dodson RF. Neoplasms of the pleura. In: Dail and Hammar’s Pulmonary Pathology, 3rd edition. Tomashesfki JF Jr.(ed). Springer 2008:670-672.

Hammar SP. Pseudomesotheliomatous carcinoma of the lung: a report of three unusual cases with
review of the literature. 2002

Small cell mesothelioma

Tunica Vaginalis Testis Meso

Fligiel Z, Kaneko M. Malignant mesothelioma of the tunica vaginalis propria testis in a patient with asbestos exposure: a case report. Cancer 1976;37:1478-1484. 68-year-old male who was regularly exposed to asbestos during 40 years of employment as a pipe insulator, although asbestos bodies were not identified in two small mediastinal lymph node fragments. Patient also had a large mediastinal mass which was biopsied and was reported as metastatic tumor in lymph nodes consistent with mesothelioma. Whether the mediastinal mass was a metastatic lesion from the testicular tumor or whether it arose from an undocumented, independent pleural mesothelioma could not be determined in the absence of an autopsy. This is the first reported case of mesothelioma of the tunica vaginalis in a patient with asbestos exposure.

Antman K, Cohen S, Dimitrov NV, et al. Malignant mesothelioma of the tunica vaginalis testis. Journal of Clinical Oncology 1984;2:447-451. 4 of their 6 cases reported had a history of asbestos exposure. See Table 1 on page 449 of article. Case #1, 58-year-old pipefitter; Case #2, 73-year-old with 25-year history of asbestos exposure (5-years in naval shipyards and 20 years as a plumber); Case #4, 63-year old machinist with 20-year history of asbestos exposure; Case #6, 43-year-old construction worker with 16-years of asbestos exposure.

Ascoli V, Faccioli F, Rahimi S, et al. Concomitant malignant mesothelioma of the pleura, peritoneum, and tunica vaginalis testis. Diagn Cytopathol 1996;14:243-248. 55-year-old male with history of cigarette smoking and history of asbestos exposure. History of recurrent pleural effusion; rind around the right lung; involvement of peritoneum and tunica vaginalis. Was thought that the pleura was the primary site.

Plas E, Riedl CR, Pflüger H. Malignant mesothelioma of the tunica vaginalis testis: review of the literature and assessment of prognostic parameters. Cancer 1998;83:2437-2446. The authors stated a positive history of asbestos exposure was found in 34.2% of patients with mesotheliomas of the tunica
Attanoos RL, Gibbs AR. Primary malignant gonadal mesotheliomas and asbestos. Histopathology 2000;37:150-159. **3 males; 1 of 3 had exposure to asbestos.**

Dodson RF, O'Sullivan MF, Brooks DR, Bruce JR. Asbestos content of omentum and mesentery in nonoccupationally exposed individuals. Toxicology and Industrial Health 2002;17.

Gorini G, Pinelli M, Sforza V, Simi U, et al. Mesothelioma of the tunica vaginalis testis: report of 2 cases with asbestos occupational exposure. Int J Surg Pathol 2005;13:211-214. **67-year-old man with 30-year history of asbestos exposure when performing locomotive repair and maintenance; and 80-year-old man with a 5-year history of asbestos exposure when performing tractor repair and maintenance (friction work). This report stated that since its initial description by Barbera and Rubino in 1957, about 80 case reports of mesothelioma of the tunica vaginalis have been described and that 34.2% had a history of asbestos exposure. The authors also stated that in a report by the WHO in 2004, asbestos exposure occurred in 23-41% of cases of tumors of the urinary system and male genital organs.**

Brimo F, Illei PB, Epstein JL. Mesothelioma of the tunica vaginalis: a series of eight cases with uncertain malignant potential. Modern Pathology 2010;23:1165-1172. **No information with respect to occupation or asbestos exposure.**

Meisenkothen C, Finkelstein MM. Asbestos exposure and malignant mesothelioma of the tunica vaginalis testis: case series and review of the literature. OA Case Reports Feb 28;2(2):17. **9 medico-legal cases of tunica vaginalis mesothelioma of the testis with histories of asbestos exposure (see Table 1 of article showing age, latency, domestic/bystander exposure, and occupational exposures).**
Alesawi AM, Levesque J, Fradet V. Malignant mesothelioma of the tunica vaginalis testis: comprehensive review of literature and case report. J Clinical Urology published online 18 November 2013 http://uro.sagepub.com/content/early/2013/11/18/2051415813511082

Mensi C, Pellegatta M, Sieno C, et al. Mesothelioma of tunica vaginalis testis and asbestos exposure. BJU Int 2012;110:533-537. **8 of 12 (67%) of interviewed cases had a history of asbestos exposure (see Table 1 of article).**

Well-differentiated Papillary Mesothelioma

Battifora H, McCaughey WTE. Tumors of the Serosal Membranes. Atlas of Tumor Pathology 1995. Third Series, Fascicle 15; page 33 (Figure 4-16) and page 50 (Figure 4-55).
Selected Cancers

Colorectal, Esophageal, Laryngeal, Pharyngeal, Stomach, Kidney/Renal, Ovarian, Lymphoma, Autoimmune, Pseudom eso

Asbestos: Selected cancers. Institute of Medicine of the National Academies. National Academy of Sciences, 2006. This book discusses pharyngeal cancer, laryngeal cancer, esophageal cancer, stomach cancer, and colorectal cancer. The committee found a causal association or lack thereof between asbestos as listed below:

<table>
<thead>
<tr>
<th>Cancer:</th>
<th>Conclusion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal</td>
<td>Suggestive of, but insufficient</td>
</tr>
<tr>
<td>Esophageal</td>
<td>Inadequate</td>
</tr>
<tr>
<td>Laryngeal</td>
<td>Sufficient</td>
</tr>
<tr>
<td>Pharyngeal</td>
<td>Suggestive of, but insufficient</td>
</tr>
<tr>
<td>Stomach (GI)</td>
<td>Suggestive of, but insufficient</td>
</tr>
</tbody>
</table>

We (SPH, DWH, JL, RAL) agree with the above findings by the US Institute of Medicine Committee. We also find evidence of a causal relationship or lack thereof between the following cancers:

<table>
<thead>
<tr>
<th>Cancer:</th>
<th>Conclusion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomesotheliomatous Lung CA</td>
<td>Sufficient, depending upon individual case data</td>
</tr>
<tr>
<td>Kidney/Renal</td>
<td>Possible</td>
</tr>
<tr>
<td>Ovarian</td>
<td>Sufficient, depending upon individual case data</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>Insufficient</td>
</tr>
<tr>
<td>Autoimmune Disease</td>
<td>Likely in many cases</td>
</tr>
</tbody>
</table>

Kidney/Renal Carcinoma

1987;44:396-401. *See page 397, Table 2 (for kidney cancer, the observed was 7; expected was 2.54; SMR 275.8; p value <0.01)*

Pascual D, Borque A. Epidemiology of Kidney Cancer. Advances in Urology 2008;782381. *See page 2, Table 3 (RR 1.1; 95% CI 1.4-1.8).* http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581742/pdf/AU2008-782381.pdf

Multiple Myeloma

Lieben J. Malignancies in asbestos workers. Archives of Environmental Health 1966;13619-621.

Non-malignant Asbestos-related Diseases

Occupations/Trades Associated with Asbestos Exposure

List of Occupations Associated with Asbestos Exposure, including but not limited to:
Boilermakers
Bakers
Brake repair and installation workers
Bricklayers and masons
Carpenters
Cement workers
Custodial workers
Decorators
Drywall workers
Electricians
Engineers
Insulators
Jewelers
Laborers
Longshoremen
Machinists
Maintenance workers
Mechanics
Merchant Seamen
Millwrights
Painters
Petro-chemical workers
Plasterers
Plumbers
Pipefitters
Power Plant workers
Railroad workers
Roofers
Rubber workers
Sheet metal workers
Shipyard workers
Smelter workers
School teachers
Steel workers
Sulfate mill workers
Welders

General

Construction: Carpenters/Electricians

Insulation Workers

Longshoremen/Dock Workers/Shipbuilding Industry/Shipyard Workers

Maintenance Workers

Merchant Marines/Seamen

Plumbers/Pipefitters

Pulp and Paper Mill Workers

School Teachers

Textile Workers

Products Associated with Asbestos Exposure

Cement Pipe

Asbestos exposures during the cutting and machining of asbestos cement pipe. EEH report dated 03/16/1977 and commissioned by the AC Pipe Producers Association.

Millette JR. Cutting CertainTeed Asbestos Cement Pipe: Report of Results-MVA7946.

MAS Report October 2002. Cutting of Certain-Teed Asbestos Containing Pipe: Work Practice Study. Revision #1

Raterman SM. Affidavit of Susan M. Raterman, CIH, in re: John Robinson (Estate of Charles Whitehead, Jr.) et al., vs. A.O. Smith Corporation, et al. Harris County District Court, 11th Judicial District; No. 2004-51352-L.

Clements, JB. Affidavit of Jerry B. Clements and catalog entitled Improving Performance Planning issued by CertainTeed while he was employed by them as a general supervisor in 1978. Affidavit dated 9-16-09.
Drywall, Taping, and Joint Compounds

Affidavits:

Affidavit of Samuel P. Hammar MD re Asbestos and Joint Compounds dated 01-07-13.

Hammar case report re Jerry Anderson (L09-365) dated 08-19-10 filed in Federal court for Waters & Kraus.

Affidavit of Richard Hatfield (undated) re the levels of exposure resulting from the use of joint compounds.

Affidavit of Dr. Richard Lemen dated April 26, 2006.

Interoffice Memorandums/Studies:

Kaiser Gypsum Interoffice Memorandum dated March 1, 1974 from J.S. Sheahan; Subject: “Dust from Joint Compound Job Operations”.

CDC-NIOSH Mortality Study of a drywall installer who died of peritoneal mesothelioma.

Articles/Publications:

Selikoff IJ, Lee D. In: Asbestos and Disease; 1978:116 (Table 5-11).

Federal Register 1986, Part II, Depart of Labor, Occupational Safety and Health Administration, 29 CFR Parts 1910 and 1926. Occupational exposure to asbestos, tremolite, anthophyllite & Actinolite, Final Rules, pages 22612-22790; and specifically Table 6 on page 22644.

Floor Tiles
AIHA QuickTips for Job Health and Safety on Care of Asbestos-containing Flooring Material.

Friction Products

Leigh, J. Letter from Dr. James Leigh to the US EPA dated 10/1/03.

OSHA 2006. Automotive brake and clutch repair work.

Gaskets

Asbestos exposure from gasket operations. Navy Regional Medical Center, Bremerton; May 1978.

Hubbard & Longo. Detection of amphibole asbestos in chrysotile sheet gaskets. (Plaintiff’s exhibit – not dated)

Millette JR. Asbestos-containing sheet gaskets and packing. Sourcebook on Asbestos Diseases

Millette JR et al. Releasability of asbestos fibers from asbestos-containing gaskets. EIA Technical Journal

Millette JR. MVA0478 report of results concerning Crane packing materials dated April 12, 1993.

Millette JR. MVA0858 report of results concerning Flexitallic gaskets dated April 21, 1994.

Dodson RF, Hammar SP, Poye LW. Mesothelioma in an individual following exposure to crocidolite-containing gaskets as a teenager. Int J Occup Environ Health 2011;17:190-194.

Kent Cigarettes

Dodson RF, Williams MG, Satterley JD. Asbestos burden in two cases of mesothelioma where the work history included manufacturing of cigarette filters. J Toxicol Environ Health 2002;65:1109-1120.

Dodson RF, Hammar SP. Pleural mesothelioma in a woman whose documented past exposure to asbestos was from smoking asbestos-containing filtered cigarettes. Inhal Toxicol 2006;18:679-684.

RT Vanderbilt Talc

Rohl AN, Langer AM. Fibrous mineral content of consumer talc-containing products, pages 393-403. Exh

Internal Correspondence: Johns-Manville October 11, 1974 re Optical and TEM counting of asbestos minerals in asbestine 3X, asbestine 325, Nytal 200, and Nytal 400 as currently produced by R.T. Vanderbilt Company. Exh 42

Internal Correspondence: Johns-Manville February 18, 1977 re Paper by C.S. Thompson concerning “Asbestos in Your Future.” Exh 41

NIOSH Technical Report re Occupational Exposure to Talc Containing Asbestos. Exh 381

Memorandum to J. Donald Miller, M.D., Director, NIOSH re employees of R.T. Vanderbilt Company, Inc. Exh 436

Regions

Baris YI, et al. An epidemiological study in an Anatolian village environmentally exposed to tremolite

Registers

asbestos. Final rule.

Miscellaneous

Animal Studies

Black Spots on the Pleura

See page 989 in Dail and Hammar's Pulmonary Pathology, 3rd Edition, Chapter 27, Volume 1.

Metastases

SV40 Virus

Lopez-Rios F, Illei PB, Rusch V, Ladanyl M. Evidence against a role for SV40 infection in human mesotheliomas and high risk false-positive PCR results owing to presence of SV40 sequences in common laboratory plasmids. *Lancet* 2004;364:1157-1166.